请看表15一2。在50次交易期间,当f=0.2(风险的赌资率是20%)时,R=2.74;当f=0.15时,R=2.57;当f=0.25时,R=2.56;可见其差别不是很大。但是,当次数为200次时,分别为56.10,43.38,43.06,差异被拉大了。如果是400次,就变成3147.00,1881.52,1854.41,其差异更大了。由此可见,以最佳的赌资率继续投资该是何等的重要。
因为上述式子为阶乘的计算式,是连续的乘法,所以100次的乘法无论按什么顺序计算其答案是同一个。每一次的胜负事先是不会知道的,有时也许连胜多次,有时则正相反,可能连输数次。R的计算式表示了无论中途的胜负顺序怎样,只要胜率是固定的,最终的R值就是固定的。并且,试验次数越多,实际的胜率就越接近60%而趋于稳定,R值的波动幅度也变小而且趋于稳定。
当增加交易次数时,就要增加这种算式的阶乘。阶乘的次数越大,R就越大。于是从上面的算式可以得出这样的结论:增加交易次数对资产的增长性和稳定性都非常重要。
划拳的例子与投资的世界是否有很大的不同?在划拳的例子里所论述的理论应用于投资是不是困难的?如图15.3所示,划拳赌博有两种情形(赢或输),而且每次的赢或输其金额事先已确定,而投资是可能情形数目更多的一种赌博。例如,可以做成类似赚5万日元的概率为4%,赚4万日元的概率为6%,如果是3万日元就是16%的期望收益的概率分布表。假如这个概率分布表能够约束未来的交易结果,对于自己的资产就能够知道会有多大程度的风险并计算出可期望得到的数学上的最大值。
举例说明如下。假设在期货交易中按图15.3所示的概率出现损益,也就是说,使资产增大至1.05倍的概率为4%,增大至1.04倍的概率为6%(例如,以100万日元的本钱每交易一次赚5万日元,那么一次的交易过后,资产将增大至1.05倍)。