SVM算法是一种学习机制,是由Vapnik提出的旨在改善传统神经网络学习方法的理论弱点,最先从最优分类面问题提出了支持向量机网络。SVM学习算法根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折中,以期获得最好的泛化能力。SVM在形式上类似于多层前向网络,而且已被应用于模式识别、回归分析、数据挖掘等方面。
支持向量机这些特点是其他学习算法(如人工神经网络)所不及的。对于分类问题,单层前向网络可解决线性分类问题,多层前向网络可解决非线性分类问题。但这些网络仅仅能够解决问题,并不能保证得到的分类器是最优的;而基于统计学习理论的支持向量机方法能够从理论上实现对不同类别间的最优分类,通过寻找最坏的向量,即支持向量,达到最好的泛化能力。
SVM总的来说可以分为线性SVM和非线性SVM两类。线性SVM是以样本间的欧氏距离大小为依据来决定划分的结构的。非线性的SVM中以卷积核函数代替内积后,相当于定义了一种广义的趾离,以这种广义距离作为划分依据。
模糊支持向量机有两种理解:一种是针对多定义样本或漏分样本进行模糊后处理;另一种是在训练过程中引入模糊因子作用。
SVM在量化投资中的应用主要是进行金融时序数列的预测。根据基于支持向量机的时间序列预测模型,先由训练样本对模型进行训练和完备,然后将时间序列数据进行预测并输出预测结果。
本章介绍的第一个案例是一种基于最小二乘法的支持向最机的复杂金融数据时间序列预测方法,大大提高了求解问题的速度和收敛精度。相比于神经网络预测方法,该方法在大批量金融数据时间序列预测的训练时间、训练次数和预测误差上都有了明显提高,对复杂金融时间序列具有较好的预测效果。
第二个案例是利用SVM进行大盘拐点判断,由于使用单一技术指标对股价反转点进行预测存在较大的误差,所以使用多个技术指标组合进行相互验证就显得特别必要。SVM由于采用了结构风险最小化原则,能够较好地解决小样本非线性和高维数问题,因此通过构造一个包含多个技术指标组合的反转点判断向最,并使用SVM对技术指标组合向量进行数据挖掘,可以得到更加准确的股价反转点预测模型。
支持向量机基本概念
SVM算法是一种学习机制,是由Vapnik提出的旨在改善传统神经网络学习方法的理论弱点,最先从最优分类面问题提出了支持向量机网络。
SVM学习算法根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折中,以期获得最好的泛化能力。SVM在形式上类似于多层前向网络,而且己被应用于模式识别、回归分析、数据挖掘等方面。支持向量机方法能够克服多层前向网络的固有缺陷,它有以下几个优点:
(1)它是针对有限样本情况的。根据结构风险最小化原则,尽量提高学习机的泛化能力,即由有限的训练样本得到小的误差,能够保证对独立的测试集仍保持小的误差,其目标是得到现有信息下的最优解,而不仅仅是样本数趋于无穷大时的最优值。
(2)算法最终将转化成一个二次型寻优问题,从理论上说,得到的将是全局最优点。
(3)算法将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性判别函数来实现原空间中的非线性判别函数,这一特殊的性质能保证机器有较好的泛化能力,同时它巧妙地解决了维数灾难问题,使得其算法复杂度与样本维数无关。