CAPM模型是对风险和收益如何定价和度量的均衡理论,根本作用在于确认期望收益和风险之间的关系,揭示市场是否存在非正常收益.一个资产的预期回报率与衡量该资产风险的一个尺度―贝塔值相联系。
CAPM是Capital Asset Pricing Model的首字母缩写。
1.资本资产定价模式(CAPM)由美国财务学家Treynor(1961),Sharpe(1964),Lintner(1965),Mossin(1966)等人于1960年代所发展出来。
2.其目的是在协助投资人决定资本资产的价格,即在市场均衡时,证券要求报酬率与证券的市场风险(系统性风险)间的线性关系。
3.市场风险系数是用β值来衡量。资本资产(capital asset)指股票、债券等有价证券。
4.CAPM所考虑的是不可分散的风险(市场风险)对证券要求
报酬率之影响,其已假定投资人可作完全多角化的投资来分散可分散的风险(公司特有风险),故此时只有无法分散的风险,才是投资人所关心的风险,因此也只有这些风险,可以获得风险贴水。
CAPM之假设
1.投资者的行为可以用均方(Mean─Variance)准则来描述,投资者效用受期望报酬率与变异数两项影响,假
设投资人为风险规避者(效用函数为凹性),或假定证券报酬率的分配为常态分配。
2.证券市场的买卖人数众多,投资人为价格接受者。
3.完美市场假设:交易市场中,没有交易成本、交易税-等,且证券可无限制分割。
4.同构型预期:所有投资者对各种投资标的之预期报酬率和风险的看法是相同的。
5.所有投资人可用无风险利率无限制借贷,且借款利率=贷款利率=无风险利率(Rf )。
6.所有资产均可交易,包括人力资本(human capital)。
7.对融券放空无限制。
CAPM之性质
1.任何风险性资产的预期报酬率=无风险利率+资产风险溢酬。
2.资产风险溢酬=风险的价格*风险的数量
3.风险的价格= E(Rm) - Rf(SML的斜率)
4.风险的数量=β
5.证券市场线(SML)的斜率等于市场风险贴水,当投资人的风险规避程度愈高,则SML的斜率愈大,证券的风险溢酬就愈大,证券的要求报酬率也愈高。
6.当证券的系统性风险(用β来衡量)相同,则两者之要求报酬率亦相同。
CAPM之应用─证券定价
1.应用资本资产订价理论探讨风险与报酬之模式,亦可发展出有关证券均衡价格的模式,供作市场交易价格之参考。
2.所谓证券的均衡价格即指对投机者而言,股价不存在任何投机获利的可能,证券均衡价格为投资证券的预期报酬率,等于效率投资组合上无法有效分散的等量风险,如无风险利率为5%,风险溢酬为8%,股票β系数值为0.8,则依证券市场线所算该股股价应满足预期报酬率11.4%,即持有证券的均衡预期报酬率为:E(Ri) = RF+βi [E(Rm) – Rf]。
3.实际上,投资人所获得的报酬率为股票价格上涨(下跌)的资本利得(或损失),加上股票所发放的现金股利或股票股利,即实际报酬率为。
4.在市场均衡时,预期均衡报酬率应等于持有股票的预期报酬率
5.若股票的市场交易价格低于此均衡价格,投机性买进将有利润,市场上的超额需求将持续存在直到股价上升至均衡价位﹔反之若股票的交易价格高于均衡价格,投机者将卖出直到股价下跌达于均衡水平。
CAPM之限制
1.CAPM的假设条件与实际不符:
a.完全市场假设:实际状况有交易成本、信息成本及税,为不完全市场。
b.同构型预期假设:实际上投资人的预期非为同质,使SML形成一个区间。
c.借贷利率相等,且等于无风险利率之假设:实际情况为借钱利率大于贷款利率。
d.报酬率分配呈常态假设,与事实不一定相符。
2.CAPM应只适用于资本资产,人力资产不一定可买卖。
3.估计的B系数指代表过去的变动性,但投资人所关心的是该证券未来价格的变动性。
4.实际情况中,无风险资产与市场投资组合可能不存在。